Combination of alkali treatment and Ag3PO4 loading effectively improves the photocatalytic activity of TiO2 nanoflowers

NEW JOURNAL OF CHEMISTRY(2024)

引用 0|浏览0
暂无评分
摘要
In this paper, three-dimensional TiO2 nanoflowers (NFs) were prepared by a facile hydrothermal method, and Ag3PO4 was grown in situ following alkali treatment to design and synthesize a Ag3PO4/OH/TiO2 catalyst with excellent photocatalytic activity under visible light. The test results show that the photocatalytic degradation performance of TiO2 NFs after alkali treatment and Ag3PO4 loading is significantly improved. This is because the alkali treatment and the introduction of Ag3PO4 can provide a large amount of -OH, which can be converted to (OH)-O-center dot under UV irradiation, followed by an increase in the number of active radicals to enhance the photocatalytic degradation performance. Meanwhile, the introduction of Ag3PO4 can effectively improve the light absorption ability of the photocatalyst. Moreover, the in situ growth of Ag3PO4 on TiO2 NFs can construct a high-quality Ag3PO4/TiO2 heterojunction to promote the charge separation and transport. Therefore, the degradation rate of Ag3PO4/OH/TiO2 can reach 90% after 30 min for degrading 3 mg L-1 RhB under visible light. The Ag3PO4/OH/TiO2 photocatalyst designed in the present work provides a new tool for the degradation of organic dyes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要