Quantum reference frames, measurement schemes and the type of local algebras in quantum field theory

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
We develop an operational framework, combining relativistic quantum measurement theory with quantum reference frames (QRFs), in which local measurements of a quantum field on a background with symmetries are performed relative to a QRF. This yields a joint algebra of quantum-field and reference-frame observables that is invariant under the natural action of the group of spacetime isometries. For the appropriate class of quantum reference frames, this algebra is parameterised in terms of crossed products. Provided that the quantum field has good thermal properties (expressed by the existence of a KMS state at some nonzero temperature), one can use modular theory to show that the invariant algebra admits a semifinite trace. If furthermore the quantum reference frame has good thermal behaviour (expressed by the existence of a KMS weight) at the same temperature, this trace is finite. We give precise conditions for the invariant algebra of physical observables to be a type II_1 factor. Our results build upon recent work of Chandrasekaran, Longo, Penington and Witten [JHEP 2023, 82 (2023)], providing both a significant mathematical generalisation of these findings and a refined operational understanding of their model.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要