Life cycle environmental analysis of offshore wind power: A case study of the large-scale offshore wind farm in China

Renewable and Sustainable Energy Reviews(2024)

引用 0|浏览2
暂无评分
摘要
China's decarbonization is indispensable for the large-scale utilization of renewable energy. In this process, the development of offshore wind energy has become an important support, because in the eastern region of China, especially the coastal areas, there's the most load requirements but limited onshore renewable resources. Under the goals of both carbon neutral and sustainable development, however, there's still a research gap in evaluating the environmental impacts of large-scale offshore wind plants in China. In this study, the research performed a comprehensive process-based life cycle environmental analysis of a large-scale (400 MW) offshore wind farm with large wind turbine units (5 MW) in China. Global Warming Potential is 25.73 g CO2-eq/kWh and greenhouse gas payback time is calculated as 12.05 months. Fossil fuel consumption amounts to 0.31 MJ/kWh with an energy payback period of 25.56 months. Material resources and ecotoxicity to freshwater need more attention with the values of 1.68 CTUe/kWh and 3.32 10−6 kg Sb-eq/kWh, respectively. The manufacturing stage contributes most to all the impacts examined. The disposal and recycling process shows significant environmental benefits for most impacts but exerts burdens on the particulate matter. Focusing on Global Warming Potential, the wind turbine generation set has the highest effect, among which the blades contribute 73.2% of it. Further, the evolution of electricity and heating mix of China and use of biomass-based precursors could decrease 57% of the blades' greenhouse gas emissions in 2050. This study could provide guidance on the sustainable design and policy-making of offshore wind farms.
更多
查看译文
关键词
Life cycle assessment,Offshore wind farm,Global warming potential,Energy resources,Carbon fiber reinforced plastic,Dynamic modeling,China
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要