谷歌浏览器插件
订阅小程序
在清言上使用

Locking the Lattice Oxygen in RuO2 to Stabilize Highly Active Ru Sites in Acidic Water Oxidation

Nature communications(2024)

引用 0|浏览9
暂无评分
摘要
Abstract Ruthenium dioxide is presently the most active catalyst for the oxygen evolution reaction (OER) in acidic media but suffers from severe Ru dissolution resulting from the high covalency of Ru-O bonds triggering lattice oxygen oxidation. Here, we report an interstitial silicon-doping strategy to stabilize the highly active Ru sites of RuO2 while suppressing lattice oxygen oxidation. The representative Si-RuO2−0.1 catalyst exhibits high activity and stability in acid with a negligible degradation rate of ~52 μV h−1 in an 800 h test and an overpotential of 226 mV at 10 mA cm−2. Differential electrochemical mass spectrometry (DEMS) results demonstrate that the lattice oxygen oxidation pathway of the Si-RuO2−0.1 was suppressed by ∼95% compared to that of commercial RuO2, which is highly responsible for the extraordinary stability. This work supplied a unique mentality to guide future developments on Ru-based oxide catalysts’ stability in an acidic environment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要