Contrast-enhanced phase-resolved second harmonic generation microscopy.

Zhanshan Wang, Canyu Hong,Zeyuan Sun,Shuang Wu, Bokai Liang, Xidong Duan,Wei-Tao Liu,Shiwei Wu

Optics letters(2024)

引用 0|浏览1
暂无评分
摘要
The characterization of inverted structures (crystallographic, ferroelectric, or magnetic domains) is crucial in the development and application of novel multi-state devices. However, determining these inverted structures needs a sensitive probe capable of revealing their phase correlation. Here a contrast-enhanced phase-resolved second harmonic generation (SHG) microscopy is presented, which utilizes a phase-tunable Soleil-Babinet compensator and the interference between the SHG fields from the inverted structures and a homogeneous reference. By this means, such inverted structures are correlated through the π-phase difference of SHG, and the phase difference is ultimately converted into the intensity contrast. As a demonstration, we have applied this microscopy in two scenarios to determine the inverted crystallographic domains in two-dimensional van der Waals material MoS2. Our method is particularly suitable for applying in vacuum and cryogenic environments while providing optical diffraction-limited resolution and arbitrarily adjustable contrast. Without loss of generality, this contrast-enhanced phase-resolved SHG microscopy can also be used to resolve other non-centrosymmetric inverted structures, e.g. ferroelectric, magnetic, or multiferroic phases.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要