In Situ Hybridization Strategy Constructs Heterogeneous Interfaces to Form Electronically Modulated MoS2/FeS2 as the Anode for High-Performance Lithium-Ion Storage

Molecules(2024)

引用 0|浏览1
暂无评分
摘要
The interfacial effect is important for anodes of transition metal dichalcogenides (TMDs) to achieve superior lithium-ion storage performance. In this paper, a MoS2/FeS2 heterojunction is synthesized by a simple hydrothermal reaction to construct the interface effect, and the heterostructure introduces an inherent electric field that accelerates the de-embedding process of lithium ions, improves the electron transfer capability, and effectively mitigates volume expansion. XPS analysis confirms evident chemical interaction between MoS2 and FeS2 via an interfacial covalent bond (Mo–S–Fe). This MoS2/FeS2 anode shows a distinct interfacial effect for efficient interatomic electron migration. The electrochemical performance demonstrated that the discharge capacity can reach up to 1217.8 mA h g−1 at 0.1 A g−1 after 200 cycles, with a capacity retention rate of 72.9%. After 2000 cycles, the capacity retention is about 61.6% at 1.0 A g−1, and the discharge capacity can still reach 638.9 mA h g−1. Electrochemical kinetic analysis indicated an enhanced pseudocapacitance contribution and that the MoS2/FeS2 had sufficient adsorption of lithium ions. This paper therefore argues that this interfacial engineering is an effective solution for designing sulfide-based anodes with good electrochemical properties.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要