谷歌浏览器插件
订阅小程序
在清言上使用

Self-Assembled Interlayer Enables High-Performance Organic Photovoltaics with Power Conversion Efficiency Exceeding 20.

ADVANCED MATERIALS(2024)

引用 0|浏览15
暂无评分
摘要
Interfacial layers (ILs) are prerequisites to form the selective charge transport for high-performance organic photovoltaics (OPVs) but mostly result in considerable parasitic absorption loss. Trimming the ILs down to a mono-molecular level via the self-assembled monolayer is an effective strategy to mitigate parasitic absorption loss. However, such a strategy suffers from inferior electrical contact with low surface coverage on rough surfaces and poor producibility. To address these issues, here, the self-assembled interlayer (SAI) strategy is developed, which involves a thin layer of 2-6 nm to form a full coverage on the substrate via both covalent and van der Waals bonds by using a self-assembled molecule of 2-(9H-carbazol-9-yl) (2PACz). Via the facile spin coating without further rinsing and annealing process, it not only optimizes the electrical and optical properties of OPVs, which enables a world-record efficiency of 20.17% (19.79% certified) but also simplifies the tedious processing procedure. Moreover, the SAI strategy is especially useful in improving the absorbing selectivity for semi-transparent OPVs, which enables a record light utilization efficiency of 5.34%. This work provides an effective strategy of SAI to optimize the optical and electrical properties of OPVs for high-performance and solar window applications.
更多
查看译文
关键词
Self-Assembled Monolayers,High-Efficiency Solar Cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要