谷歌浏览器插件
订阅小程序
在清言上使用

High-Level Design of Precision-Scalable DNN Accelerators Based on Sum-Together Multipliers

IEEE ACCESS(2024)

引用 0|浏览5
暂无评分
摘要
Precison-scalable (PS) multipliers are gaining traction in Deep Neural Network accelerators, particularly for enabling mixed-precision (MP) quantization in Deep Learning at the edge. This paper focuses on the Sum-Together (ST) class of PS multipliers, which are subword-parallel multipliers that can execute a standard multiplication at full precision or a dot-product with parallel low-precision operands. Our contributions in this area encompass multiple aspects: we enrich our previous comparison of SoA ST multipliers by including our recent radix-4 Booth ST multiplier and two novel designs; we extend the explanation of the architecture and the design flow of our previously proposed ST-based PS hardware accelerators designed for 2D-Convolution, Depth-wise Convolution, and Fully-Connected layers that we developed using High-Level Synthesis (HLS); we implement the uniform integer quantization equations in hardware; we conduct a broad HLS-driven design space exploration of our ST-based accelerators, varying numerous hardware parameters; finally, we showcase the advantages of ST-based accelerators when integrated into System-on-Chips (SoCs) in three different scenarios (low-area, low-power, and low-latency), running inference on MP-quantized MLPerf Tiny models as case study. Across the three scenarios, the results show an average latency speedup of 1.46x, 1.33x, and 1.29x, a reduced energy consumption in most of the cases, and a marginal area overhead of 0.9%, 2.5% and 8.0%, compared to SoCs with accelerators based on fixed-precision 16-bit multipliers. To sum up, our work provides a comprehensive understanding of ST-based accelerators’ performance in an SoC context, paving the way for future enhancements and the solution of identified inefficiencies.
更多
查看译文
关键词
Deep learning,hardware accelerators,high-level synthesis,mixed-precision quantization,precision-scalable MAC unit,sum-together multipliers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要