FAT1 upregulation is correlated with an immunosuppressive tumor microenvironment and predicts unfavorable outcome of immune checkpoint therapy in non-small cell lung cancer

Chao Chen,Yanling Li, Haozhen Liu,Mengying Liao, Jianyi Yang,Jixian Liu

Heliyon(2024)

引用 0|浏览2
暂无评分
摘要
Background Previous studies found that FAT1 was recurrently mutated and aberrantly expressed in multiple cancers, and the loss function of FAT1 promoted the formation of cancer-initiating cells in several cancers. However, in some types of cancer, FAT1 upregulation could lead to epithelial-mesenchymal transition (EMT). The role of FAT1 in cancer progression, which appears to be cancer-type-specific, is largely unknown. Methods QRT-PCR and immunochemistry were used to verify the expression of FAT1 in non-small cell lung cancer (NSCLC). QRT-PCR and Western blot were used to detect the influence of siFAT1 knockdown on the expression of potential targets of FAT1 in NSCLC cell lines. GEPIA, KM-plotter, CAMOIP, and ROC-Plotter were used to evaluate the association between FAT1 and clinical outcomes based on expression and clinical data from TCGA and immune checkpoint inhibitors (ICI) treated cohorts. Results We found that FAT1 upregulation was associated with the activation of TGF-β and EMT signaling pathways in NSCLC. Patients with a high FAT1 expression level tend to have a poor prognosis and hard to benefit from ICI therapy. Genes involved in TGF-β/EMT signaling pathways (SERPINE1, TGFB1/2, and POSTN) were downregulated upon knockdown of FAT1. Genomic and immunologic analysis showed that high cancer-associated fibroblast (CAF) abundance, decreased CD8+ T cells infiltration, and low TMB/TNB were correlated with the upregulation of FAT1, thus promoting an immunosuppressive tumor microenvironment (TME) which influence the effect of ICI-therapy. Conclusion Our findings revealed the pattern of FAT1 upregulation in the TME of patients with NSCLC, and demonstrated its utility as a biomarker for unfavorable clinical outcomes, thereby providing a potential therapeutic target for NSCLC treatment.
更多
查看译文
关键词
FAT1,SERPINE1,Immune checkpoint inhibitors,Non-small cell lung cancer,Tumor microenvironment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要