Utlization of generalized heat flux model on thermal transport of powell-eyring model via oham with heat geneartion aspects

Esha Rafique, Nida Ilyas,Muhammad Sohail

Babylonian Journal of Mathematics(2024)

引用 0|浏览0
暂无评分
摘要
The focus of this work is on the flow of a spinning Powell-Eyring nanofluid in the boundary layer in three dimensions using magnetohydrodynamics (MHD). The research simulates mass transfer processes and heat transfer processes using non-Fick's mass flux theory and non-Fourier heat flux theory, respectively. Heat transport phenomena are analyzed by the integration of non-linear heat generation/absorption and thermal radiation properties. The boundary layer method is employed to solve a system of nonlinear partial differential equations (PDE) in the mathematical formulation. These equations are converted into nonlinear ordinary differential equations (ODES), and then the optimal OHAM with convergence control parameters is used to solve them. The impact of various physical movement circumstances on concentration and temperature profiles is visually represented through the generation of diagrams. This study provides important new understandings for both applied and scholarly research on complex heat transfer and fluid dynamics mechanisms in the context of three-dimensional MHD boundary layer flows of rotating Powell-Eyring nanofluids.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要