Polyethylene glycol-polyvinylidene fluoride/TiO2 nanocomposite polymer coatings with efficient antifouling strategies: Hydrophilized defensive surface and stable capacitive deionization

Journal of Colloid and Interface Science(2024)

引用 0|浏览2
暂无评分
摘要
Capacitive deionization (CDI) is flourishing as an energy-efficient and cost-effective water desalination method. However, challenges such as electrode degradation and fouling have hindered the practical deployment of CDI technology. To address these challenges, the key point of our strategy is applying a hydrophilic coating composed of polyethylene glycol (PEG)-functionalized nano-TiO2/polyvinylidene fluoride (PVDF) to the electrode interface (labeled as APPT electrode). The PEG/PVDF/TiO2 layer not only mitigates the co-ion depletion, but also imparts the activated carbon electrode hydrophilicity. As anticipated, the APPT electrode possessed an enhanced desalination capacity of 83.54 μmol g−1 and a low energy consumption of 17.99 Wh m−3 in 10 mM sodium chloride solution compared with the bare activated carbon (AC) electrode. Notably, the APPT maintained about 93.19 % of its desalination capacity after 50 consecutive adsorption–desorption cycles in the presence of bovine serum albumin (BSA). During the trial, moreover, no obvious overall performance decline was noted in concentration reduction (Δc), water recovery (WR) and productivity (P) over 50 cycles. This strategy realizes energy-efficient, antifouling and stable brackish water desalination and has great promise for practical applications.
更多
查看译文
关键词
Antifouling coatings,Carbon electrode,Organic fouling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要