Network Learning with Directional Sign Patterns

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Complex systems can be effectively modeled via graphs that encode networked interactions, where relations between entities or nodes are often quantified by signed edge weights, e.g., promotion/inhibition in gene regulatory networks, or encoding political of friendship differences in social networks. However, it is often the case that only an aggregate consequence of such edge weights that characterize relations may be directly observable, as in protein expression of in gene regulatory networks. Thus, learning edge weights poses a significant challenge that is further exacerbated for intricate and large-scale networks. In this article, we address a model problem to determine the strength of sign-indefinite relations that explain marginal distributions that constitute our data. To this end, we develop a paradigm akin to that of the Schrödinger bridge problem and an efficient Sinkhorn type algorithm (more properly, Schrödinger-Fortet-Sinkhorn algorithm) that allows fast convergence to parameters that minimize a relative entropy/likelihood criterion between the sought signed adjacency matrix and a prior. The formalism that we present represents a novel generalization of the earlier Schrödinger formalism in that marginal computations may incorporate weights that model directionality in underlying relations, and further, that it can be extended to high-order networks – the Schrödinger-Fortet-Sinkhorn algorithm that we derive is applicable all the same and allows geometric convergence to a sought sign-indefinite adjacency matrix or tensor, for high-order networks. We demonstrate our framework with synthetic and real-world examples.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要