NonlinearSolve.jl: High-Performance and Robust Solvers for Systems of Nonlinear Equations in Julia

Avik Pal,Flemming Holtorf, Axel Larsson, Torkel Loman, Utkarsh, Frank Schäefer, Qingyu Qu,Alan Edelman, Chris Rackauckas

CoRR(2024)

引用 0|浏览2
暂无评分
摘要
Efficiently solving nonlinear equations underpins numerous scientific and engineering disciplines, yet scaling these solutions for complex system models remains a challenge. This paper presents NonlinearSolve.jl - a suite of high-performance open-source nonlinear equation solvers implemented natively in the Julia programming language. NonlinearSolve.jl distinguishes itself by offering a unified API that accommodates a diverse range of solver specifications alongside features such as automatic algorithm selection based on runtime analysis, support for GPU-accelerated computation through static array kernels, and the utilization of sparse automatic differentiation and Jacobian-free Krylov methods for large-scale problem-solving. Through rigorous comparison with established tools such as Sundials and MINPACK, NonlinearSolve.jl demonstrates unparalleled robustness and efficiency, achieving significant advancements in solving benchmark problems and challenging real-world applications. The capabilities of NonlinearSolve.jl unlock new potentials in modeling and simulation across various domains, making it a valuable addition to the computational toolkit of researchers and practitioners alike.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要