Synthesis of cobalt selenide composite material: A novel platform of the electrochemical sensor for sensitive determination of Upadacitinib

Electrochimica Acta(2024)

引用 0|浏览3
暂无评分
摘要
This study investigates the first electrochemical determination of Upadacitinib (UPA), a potent Janus kinase (JAK) inhibitor with remarkable efficacy in treating various inflammatory disorders, utilizing a GCE modified with a composite material comprising Co6.8Se8 embedded in porous carbon (Co6.8Se8@NPC). Simultaneously, a novel Co6.8Se8@NPC composite was synthesized using a zeolitic imidazolate framework (ZIF-12) via a one-pot synthesis method. The characterizations confirmed that Co6.8Se8@NPC is uniformly dispersed within the porous carbon network. Leveraging the applications of Metal-Organic Frameworks (MOFs) and their derivatives, Co6.8Se8@NPC was explored for the determination of UPA. The electrochemical behavior of UPA was systematically investigated using cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy, upon modifying the GCE with the Co6.8Se8@NPC composite. These materials significantly enhanced sensitivity and selectivity for Upadacitinib detection. Compared with the unmodified electrode, the Co6.8Se8@NPC/GCE exhibited a notable catalytic effect towards the oxidation of UPA, as evidenced by the appearance of an irreversible oxidative peak at a reduced potential and an enhancement in current. The developed method exhibited exceptional performance characteristics with a broad linear range, and low limits of detection and quantification. Moreover, the sensor exhibits good selectivity, repeatability, and stability. Furthermore, the investigation extended to the determination of Upadacitinib in pharmaceutical and biological samples, underscoring the practical applicability of the modified GCE in real-world scenarios.
更多
查看译文
关键词
Janus kinase (JAK) inhibitor,Upadacitinib,Co6.8Se8@NPC composite,electrochemical sensor,pharmaceutical analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要