SAT-Based Techniques for Lexicographically Smallest Finite Models

AAAI 2024(2024)

引用 0|浏览0
暂无评分
摘要
This paper proposes SAT-based techniques to calculate a specific normal form of a given finite mathematical structure (model). The normal form is obtained by permuting the domain elements so that the representation of the structure is lexicographically smallest possible. Such a normal form is of interest to mathematicians as it enables easy cataloging of algebraic structures. In particular, two structures are isomorphic precisely when their normal forms are the same. This form is also natural to inspect as mathematicians have been using it routinely for many decades. We develop a novel approach where a SAT solver is used in a black-box fashion to compute the smallest representative. The approach constructs the representative gradually and searches the space of possible isomorphisms, requiring a small number of variables. However, the approach may lead to a large number of SAT calls and therefore we devise propagation techniques to reduce this number. The paper focuses on finite structures with a single binary operation (encompassing groups, semigroups, etc.). However, the approach is generalizable to arbitrary finite structures. We provide an implementation of the proposed algorithm and evaluate it on a variety of algebraic structures.
更多
查看译文
关键词
CSO: Satisfiability,CSO: Constraint Satisfaction,CSO: Search,SO: Heuristic Search
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要