AdaFormer: Efficient Transformer with Adaptive Token Sparsification for Image Super-resolution

Xiaotong Luo, Zekun Ai, Qiuyuan Liang,Ding Liu,Yuan Xie,Yanyun Qu,Yun Fu

AAAI 2024(2024)

引用 0|浏览7
暂无评分
摘要
Efficient transformer-based models have made remarkable progress in image super-resolution (SR). Most of these works mainly design elaborate structures to accelerate the inference of the transformer, where all feature tokens are propagated equally. However, they ignore the underlying characteristic of image content, i.e., various image regions have distinct restoration difficulties, especially for large images (2K-8K), failing to achieve adaptive inference. In this work, we propose an adaptive token sparsification transformer (AdaFormer) to speed up the model inference for image SR. Specifically, a texture-relevant sparse attention block with parallel global and local branches is introduced, aiming to integrate informative tokens from the global view instead of only in fixed local windows. Then, an early-exit strategy is designed to progressively halt tokens according to the token importance. To estimate the plausibility of each token, we adopt a lightweight confidence estimator, which is constrained by an uncertainty-guided loss to obtain a binary halting mask about the tokens. Experiments on large images have illustrated that our proposal reduces nearly 90% latency against SwinIR on Test8K, while maintaining a comparable performance.
更多
查看译文
关键词
CV: Low Level & Physics-based Vision
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要