Activation of the FOXM1/ASF1B/PRDX3 axis confers hyperproliferative and antioxidative stress reactivity to gastric cancer

Cancer Letters(2024)

引用 0|浏览2
暂无评分
摘要
Nucleosome assembly during DNA replication is dependent on histone chaperones. Recent studies suggest that dysregulated histone chaperones contribute to cancer progression, including gastric cancer (GC). Further studies are required to explore the prognostic and therapeutic implications of histone chaperones and their mechanisms of action in GC progression. Here we identified histone chaperone ASF1B as a potential biomarker for GC proliferation and prognosis. ASF1B was significantly upregulated in GC, which was associated with poor prognosis. In vitro and in vivo experiments demonstrated that the inhibition of ASF1B suppressed the malignant characteristics of GC, while overexpression of ASF1B had the opposite effect. Mechanistically, transcription factor FOXM1 directly bound to the ASF1B-promoter region, thereby regulating its transcription. Treatment with thiostrepton, a FOXM1 inhibitor, not only suppressed ASF1B expression, but also inhibited GC progression. Furthermore, ASF1B regulated the mitochondrial protein peroxiredoxin 3 (PRDX3) transcription in a FOXM1-dependent manner. The crucial role of ASF1B-regulated PRDX3 in GC cell proliferation and oxidative stress balance was also elucidated. In summary, our study suggests that the FOXM1-ASF1B-PRDX3 axis is a potential therapeutic target for treating GC.
更多
查看译文
关键词
Gastric cancer,ASF1B,PRDX3,FOXM1,Oxidative stress
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要