Transforming spontaneous premature neonatal EEG to unpaired spontaneous fetal MEG using a CycleGan learning approach

Alban Gallard, Benoit Brebion,Katrin Sippel, Amer Zaylaa,Hubert Preissl,Sahar Moghimi, Yael Fregier,Fabrice Wallois

crossref(2024)

引用 0|浏览0
暂无评分
摘要
A large body of electroencephalography (EEG) studies has characterized the spontaneous neural activity of premature neonates at different gestational ages. However, evaluation of normal and pathological fetal brain development is still a challenge due to the complexity of the extraction and analysis of fetal neural activity. Fetal magnetoencephalography (fMEG) is currently the only available technique to record fetal neural activity with a time resolution equivalent to that of EEG. However, the signatures and characteristics of fetal spontaneous neural activity are still largely unknown. Benefiting from progress in machine learning and artificial intelligence, we aimed to transfer premature EEG to fMEG, to characterize the manifestation of spontaneous activity using the knowledge obtained from premature EEG. In this study, 30 high-resolution EEG recordings from premature newborns and 44 fMEG recordings, both from 34 to 37 weeks of gestation (wGA) were used to develop a transfer function to predict the spontaneous neural activity of the fetus. After preprocessing, bursts of spontaneous activity were detected using the non-linear energy operator over both EEG and fMEG signals. Next, we proposed a CycleGAN-based model to transform the premature EEG to fMEG and vice versa and evaluated its performance with both time and frequency measurements on both forward and inverse conversions. In the time domain, the values were similar for the mean square error (< 5%) and correlation (0.91 ± 0.05 and 0.89 ± 0.08) for the EEG to fMEG and fMEG to EEG transformations between the original data and that generated by CycleGAN. However, considering the frequency content, the CycleGAN-based model modulated the frequency content of EEG to MEG transformed signals relative to the original signals by increasing the power, on average, in all frequency bands, except for the slow delta frequency band. Our developed model showed promising potential to generate a priori signatures of fMEG manifestations related to spontaneous neural activity. Collectively, this study represents the first steps toward identifying neurobiomarkers of fetal brain development. ### Competing Interest Statement The authors have declared no competing interest. ### Funding Statement This work was supported by a joint call from the Agence Nationale de la Recherche (ANR-21-CE19-0046 fMEG-OPM and ANR VIVAH) and the Deutsche Forschungsgemeinschaft (PR 496/11-1). This work was also supported by grants from Region Hauts-de-France and the VIVAH project. ### Author Declarations I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained. Yes The details of the IRB/oversight body that provided approval or exemption for the research described are given below: The local ethics committee (CPP Ouest I) approved the study (ID-RCB: 2021-A02556-35). The local ethics committee of the Medical Faculty of the University of Tuebingen approved the study (511/2015BO1 and 330/2010BO1). I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals. Yes I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance). Yes I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable. Yes All data produced in the present study are available upon reasonable request to the authors
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要