Genetic impact of external Targhee sires at the U.S. Sheep Experiment Station: a case study of introgression

TRANSLATIONAL ANIMAL SCIENCE(2024)

引用 0|浏览0
暂无评分
摘要
Sheep breeders requested that the U.S. Sheep Experiment Station (USSES) to participate in national genetic evaluation through the National Sheep Improvement Program (NSIP). The reasons included the need for (1) a comparison of the productivity of industry and United States Department of Agriculture (USDA) lines, (2) transparency of USDA flocks, (3) genetic ties for NSIP by sampling of industry flocks, and (4) development of premium genetic lines for public release. In response, USSES began to incorporate external sires from NSIP participating flocks into the USSES Targhee flock. Our objective, based on a pedigree analysis, was to test if introgression of external genetics into the flock was achieved. The pedigree included 13,189 animals with mean maximum generations, mean complete generations, and mean equivalent complete generations of 4.2, 1.8, and 2.6, respectively. The mean generation interval was 3.1 yr. The reference population was defined as lambs born from 2021 to 2023 (n = 792). Two additional populations were defined as the current mature ewe flock (n = 123) and the current mature rams (n = 14). The Genetic Conservation Index averaged 7.7 for the full population and 25.7 for the reference population. Overall inbreeding was 0.003 for the full population and 0.006 for the reference population. The rate of inbreeding was 0.0003 per generation. Average relatedness was 0.015 for the full population and 0.018 for the reference population. The effective number of founders, effective number of ancestors, and founder genome equivalents contributing to the reference population were 60, 39, and 19.1, respectively. The ratio of the effective number of founders to the effective number of ancestors was 1.5, indicating the presence of genetic bottlenecks. Measures of effective population size ranged from 102 to 547. Of the 704 offspring produced by external sires, 17 ram lambs and 132 ewe lambs were retained for breeding. The USSES sires produced 299 offspring with 2 ram lambs and 51 ewe lambs retained. Incorporating external sires resulted in a cumulative percentage of genetic variance of 48.8, 49.1, and 44.2 of external genetics for the reference population, current mature ewe flock, and current mature rams, respectively. Stakeholder needs were addressed by introgression of external sires and participation in NSIP, but future selection practices need to be modified to maintain a minimum of 50% USSES core genetics in the flock. This study provided an assessment of the genetic diversity present in the U.S. Sheep Experiment Station Targhee flock and an evaluation of the success of introgression of industry sires into the flock. The genetic impact of incorporating external sires into the flock was higher than expected; breeding managers can learn from our experiences to carefully manage the introgression of external genetics in their flock. Stakeholder requests for the U.S. Sheep Experiment Station (USSES) to participate in the National Sheep Improvement Program (NSIP) for genetic evaluation included being able to compare the productivity of industry and United States Department of Agriculture (USDA) lines, transparency of USDA flocks, and creating genetic ties for NSIP by sampling of industry flocks. In response, USSES began to incorporate external sires from NSIP participating flocks into the USSES Targhee flock. Our objective, based on a pedigree analysis, was to test if introgression of external genetics into the flock was achieved. The pedigree included 13,189 animals and a reference population for comparison was defined as lambs born from 2021 to 2023 (n = 792). Two additional populations were defined as the current mature ewe flock (n = 123) and the current mature rams (n = 14). Incorporating external sires resulted in a cumulative percentage of genetic variance of 48.8, 49.1, and 44.2 of external genetics for the reference population, current mature ewe flock, and current mature rams, respectively. Stakeholder needs were addressed by introgression of external sires and participation in NSIP, but future selection practices need to be modified to maintain a minimum of 50% USSES core genetics in the flock.
更多
查看译文
关键词
genetic conservation index,genetic diversity,introgression,ovine,Targhee
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要