The Influence of Crystal Orientation and Thermal State of a Pure Cu on the Formation of Helium Blisters

Daniel Shtuckmeyster, Nitzan Maman, Moshe Vaknin, Gabriel Zamir,Victor Y. Zenou,Ulrich Kentsch, Itzchak Dahan,Roni Z. Shneck

METALS(2024)

引用 0|浏览2
暂无评分
摘要
The factors that influence the formation of helium blisters in copper were studied, including crystallographic grain orientation and thermomechanical conditions. Helium implantation experiments were conducted at 40 KeV with a dose of 5 x 1017 ions/cm2, and the samples were then subjected to post-implantation heat treatments at 450 degrees C for different holding times. A scanning electron microscope (SEM) equipped with an electron backscatter diffraction (EBSD) detector was used to analyze the samples, revealing that the degree of blistering erosion and its evolution with time varied with the crystallographic plane of the free surface in different ways in annealed and cold rolled copper. Out of the investigated states, rolled copper with a (111) free surface had superior helium blistering durability. This is explained by the consideration of the multivariable situation, including the role of dislocations and vacancies. For future plasma-facing component (PFC) candidate material, similar research should be conducted in order to find the optimal combination of material properties for helium blistering durability. In the case of Cu selection as a PFC, the two practical approaches to obtain the preferred (111) orientation are cold rolling and thin layer technologies.
更多
查看译文
关键词
plasma-facing components,helium blistering,thermo-mechanical state,crystal orientation,dislocations and vacancies
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要