Enhancing dielectric passivation on monolayer WS 2 via a sacrificial graphene oxide seeding layer

P.-J. Wyndaele,J.-F. de Marneffe, S. Sergeant, C. J. L. de la Rosa, S. Brems, A. M. Caro,S. De Gendt

npj 2D Materials and Applications(2024)

引用 0|浏览0
暂无评分
摘要
The full utilization of two-dimensional transition metal dichalcogenides (2D TMDCs) faces several challenges, among which is realizing uniform material deposition on the 2D surface. Typical strategies to enable material growth lead to a poor interface quality, degrading the 2D TMDC’s properties. In this work, a sacrificial, graphene oxide-based seeding layer is used (1) as passivation layer, protecting the underlying 2D TMDC and (2) as nucleation layer, enabling uniform material growth. Graphene is transferred on monolayer WS 2 , establishing a high-quality van der Waals interface. After transfer, the polymeric residues on graphene are cleaned via a combination of wet- and dry treatments and functionalized via dry UV/O 3 oxidation. The rate of graphene oxidation is shown to be substrate dependent, which is explained by UV light-induced ultrafast charge transfer between the graphene and WS 2 monolayer. The carbon-oxygen functionalities serve as nucleation sites in a subsequent HfO 2 ALD process, achieving more uniform dielectric growth and faster layer closure compared to direct deposition. The graphene-based nucleation- / passivation approach offers adaptability, allowing for tailored surface chemistry to enable any alternative material growth, while maintaining a prefect van der Waals interface.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要