Characterizing Landfill Extent, Composition, and Biogeochemical Activity using Electrical Resistivity Tomography and Induced Polarization under Varying Geomembrane Coverage

GEOPHYSICS(2024)

引用 0|浏览2
暂无评分
摘要
Landfill monitoring is essential for sustainable waste management and environmental protection. Geophysical methods can provide quasi-continuous spatial and temporal insights into subsurface physical properties and processes in a non-intrusive manner. The effectiveness of monitoring landfill extent, composition, and degradation under varying geomembrane coverage was evaluated using electrical resistivity tomography (ERT) and induced polarization (IP) methods. Synthetic electrical models for landfill with different geomembrane damage degrees were inverted to assess data reliability. The current conduction channels into the geomembrane during the electrical survey were quantified. Reliable electrical data was obtained when the inverted conduction channel ratio of the geomembrane (representing damage to the geomembrane) was 51.6% or higher. This criterion was validated in a landfill experiencing aeration and anaerobic treatments. ERT and IP data captured construction and domestic waste distribution and identified the landfill boundary. The chargeability of domestic waste proved sensitive to microbial degradation activity, corroborated by characteristic ammonium and nitrate ions and a linear relation between chargeability and subsurface temperature. Temperature variations between the aerobic and anaerobic reaction zones (>20°C and = 12°C) were observed to correlate with high chargeability values (>80.4 mV/V), signifying the presence of biogeochemically active zones. IP excels in characterizing geomembrane-covered landfill boundaries and discerning biogeochemical activity, thereby enhancing landfill monitoring and waste management strategies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要