Minimal entanglement for injecting diagonal gates

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Non-Clifford gates are frequently exclusively implemented on fault-tolerant architectures by first distilling magic states in specialised magic-state factories. In the rest of the architecture, the computational space, magic states can then be consumed by a stabilizer circuit to implement non-Clifford operations. We show that the connectivity between the computational space and magic state factories forms a fundamental bottleneck on the rate at which non-Clifford operations can be implemented. We show that the nullity of the magic state, ν(|D⟩) for diagonal gate D, characterizes the non-local resources required to implement D in the computational space. As part of our proof, we construct local stabilizer circuits that use only ν(|D⟩) ebits to implement D in the computational space that may be useful to reduce the non-local resources required to inject non-Clifford gates. Another consequence is that the edge-disjoint path compilation algorithm [arXiv:2110.11493] produces minimum-depth circuits for implementing single-qubit diagonal gates.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要