Improving the Bit Complexity of Communication for Distributed Convex Optimization

CoRR(2024)

引用 0|浏览9
暂无评分
摘要
We consider the communication complexity of some fundamental convex optimization problems in the point-to-point (coordinator) and blackboard communication models. We strengthen known bounds for approximately solving linear regression, p-norm regression (for 1≤ p≤ 2), linear programming, minimizing the sum of finitely many convex nonsmooth functions with varying supports, and low rank approximation; for a number of these fundamental problems our bounds are nearly optimal, as proven by our lower bounds. Among our techniques, we use the notion of block leverage scores, which have been relatively unexplored in this context, as well as dropping all but the “middle" bits in Richardson-style algorithms. We also introduce a new communication problem for accurately approximating inner products and establish a lower bound using the spherical Radon transform. Our lower bound can be used to show the first separation of linear programming and linear systems in the distributed model when the number of constraints is polynomial, addressing an open question in prior work.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要