High-pressure-torsion-induced segregation, precipitation and grain refinement of Al-(Si, Mg and Cu) binary alloys

Journal of Materials Science & Technology(2024)

引用 0|浏览7
暂无评分
摘要
To uncover the effects of segregation and precipitation on grain refinement of metals under severe plastic deformation, high-pressure-torsion (HPT) processing is performed on three binary Al-(Si, Mg, and Cu) alloys with different stability and segregation characteristics. Atom probe tomography analysis reveals that HPT processing induces significant decomposition of Al-1 at% Si and Al-1 at% Cu alloys with coarse Si particles and fine Al2Cu (θ) precipitates formed, but no decomposition of Al-1 at% Mg alloy, with dislocations segregated with Si, Cu, and Mg, and grain boundaries (GBs) only segregated with Cu and Mg. The GB segregation of Cu is stronger than that of Mg and Si, with Cu excess in the range of 1.5–7.0 atoms/nm2, Mg excess in the range of 0–4.0 atoms/nm2, but no Si excess. Interestingly, some GBs without Mg segregation develop a Mg-depletion zone along a single side. All evidences demonstrate that GB segregation and precipitation are responsible for HPT-induced grain refinement of Al-1Mg and Al-1Cu alloys but coarsening of the Al-1Si alloy. Engineering solute distribution is of significance in controlling the ultrafine grain of the Al alloys.
更多
查看译文
关键词
Al alloys,High pressure torsion,Grain refinement,Segregation,Precipitation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要