谷歌浏览器插件
订阅小程序
在清言上使用

Polarization Near Dislocation Cores in SrTiO3 Single Crystals: the Role of Flexoelectricity

APPLIED PHYSICS LETTERS(2024)

引用 0|浏览2
暂无评分
摘要
Spontaneous polarization as large as ∼28 μC/cm2 was recently observed around the dislocation cores in non-polar SrTiO3 bulk crystals, and its origin was attributed to the flexoelectric effect, i.e., polarization induced by strain gradients. However, the roles of flexoelectricity, relative to other electromechanical contributions, and the nature of dislocations, i.e., edge vs screw dislocations in the induced polarization, are not well understood. In this work, we study the role of flexoelectricity in inducing polarization around three types of dislocation cores in SrTiO3: b=a(100) edge dislocation, b=a(110) edge dislocation, and b=a(010) screw dislocation, where b is the Burgers vector. For the edge dislocations, polarization can be induced by electrostriction alone, while flexoelectricity is essential for stabilizing the symmetric polarization pattern. The shear component of the flexoelectric tensor has a dominant effect on the magnitude and spatial distribution of the flexoelectric polarization. In contrast, no polarization is induced around the b=a(010) screw dislocation through either electrostriction or flexoelectricity. Our findings provide an in-depth understanding of the role of flexoelectricity in inducing polarization around dislocation cores and offer insights into the defect engineering of dielectric/ferroelectric materials.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要