Data-Driven Techniques for Short-Term Electricity Price Forecasting through Novel Deep Learning Approaches with Attention Mechanisms

ENERGIES(2024)

引用 0|浏览0
暂无评分
摘要
The electricity market is constantly evolving, being driven by factors such as market liberalization, the increasing use of renewable energy sources (RESs), and various economic and political influences. These dynamics make it challenging to predict wholesale electricity prices. Accurate short-term forecasting is crucial to maintaining system balance and addressing anomalies such as negative prices and deviations from predictions. This paper investigates short-term electricity price forecasting using historical time series data and employs advanced deep learning algorithms. First, four deep learning models are implemented and proposed, which are a convolutional neural network (CNN) with an integrated attention mechanism, a hybrid CNN followed by a gated recurrent unit model (CNN-GRU) with an attention mechanism, and two ensemble learning models, which are a soft voting ensemble and a stacking ensemble model. Also, the optimized version of a transformer model, the Multi-Head Attention model, is introduced. Finally, the perceptron model is used as a benchmark for comparison. Our results show excellent prediction accuracy, particularly in the hybrid CNN-GRU model with attention, thereby achieving a mean absolute percentage error (MAPE) of 6.333%. The soft voting ensemble model and the Multi-Head Attention model also performed well, with MAPEs of 6.125% and 6.889%, respectively. These findings are significant, as previous studies have not shown high performance with transformer models and attention mechanisms. The presented results offer promising insights for future research in this field.
更多
查看译文
关键词
load forecasting,long short-term memory,perceptron,convolutional neural networks (CNN),Multi-Head Attention,transformer,hybrid CNN-gated recurrent units with attention,evaluation metrics,power sector,data analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要