An evolutionary cell biology perspective into the diverging mechanisms of clathrin-mediated endocytosis in dikarya fungi

Andrea Picco, Christopher P. Toret, Anne-Sophie Rivier-Cordey,Marko Kaksonen

biorxiv(2024)

引用 0|浏览2
暂无评分
摘要
Clathrin-mediated endocytosis is an ancient eukaryotic trafficking pathway, which transports plasma membrane and associated cargo into the cell and is involved in numerous cell- and tissue-level processes. Cargo selection and clathrin-coated vesicle formation is mediated by over 60 proteins that assemble in a regular and sequential manner at the plasma membrane. Decades of endocytosis studies have followed the tenet that uncovering the conserved core molecular mechanisms is sufficient to understand a cellular process. However, this approach also revealed a number of cell type or species-related variations that challenge a universal conserved, core mechanism. In this paper, we refocus on the endocytic diversity to understand how evolution shapes endocytic mechanisms. We define a comparative evolutionary cell biology approach that uses dikarya fungi as a model clade and live-cell fluorescence microscopy to study endocytosis dynamics in three species: Saccharomyces cerevisiae , Schizosaccharomyces pombe and Ustilago maydis . Our results quantitatively define several phenotypic differences between the species. We uncover several differences that impact the endocytic early phase, the protein assembly order, actin regulation, membrane invagination and scission. These findings demonstrate a mosaic evolution of endocytic traits, suggest ancestral states and direction of changes. We also investigate the phenotypic plasticity and robustness against environmental conditions. Lastly, we demonstrate that relatively minor evolutionary changes can majorly impact endocytic phenotypes. These studies force an appreciation of endocytic variation as not auxiliary, but vital to mechanistic understanding of this conserved cellular pathway. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要