谷歌浏览器插件
订阅小程序
在清言上使用

A new paradigm for battery structural design towards interface-free, all-in-one cell configuration

JOURNAL OF MATERIALS CHEMISTRY A(2024)

引用 0|浏览16
暂无评分
摘要
The commercial lithium-ion cell is based on layer-by-layer stacking of the cathode, porous separator, and anode laminates. The internal cathode/separator and anode/separator interfaces severely hamper Li-ion transport and displacement between the neighboring layers easily causes cell failure. Herein, we developed a novel interface-free cell configuration realized with a multifunctional polymer composite (LiPEAOB) which is used as both the electrode binder and the cell separator. The all-in-one cell configuration effectively eliminates the internal interfaces by holding all the cell components within the same LiPEAOB monolith. Meanwhile, the traditional porous separator is replaced by the nonporous and Li-conductive LiPEAOB membrane incorporated with nano Al2O3 filler. As such, we successfully overcome the two fundamental issues, namely (i) the high internal interfacial resistance and (ii) the cathode-anode cross-talk within the cell. The assembled LFP/graphite cell shows high rate capability, which can deliver a capacity of 104 mA h g-1 at a 10C rate. We demonstrate a significantly improved cycle life of the proposed cell compared to the traditional counterpart at different charge/discharge rates. The new paradigm for battery architecture within a continuous functional polymer matrix is important to revolutionize the state-of-the-art assembly of lithium-ion batteries with extremely high rates and long cycle life. The novel all-in-one cell configuration contributes to developing batteries of extremely high rate performance and long durability by eliminating the internal interfaces and adopting a nonporous cell separator.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要