Microstructure and fracture toughness of a Nb–Ti–Si-based in-situ composite fabricated by laser-based directed energy deposition

Composites Part B: Engineering(2024)

引用 0|浏览2
暂无评分
摘要
Laser-based directed energy deposition (LDED), a significant integrated preparation technique combining material design and production, has been progressively used to manufacture Nb–Ti–Si-based in-situ composites. However, it is commonly known that Nb–Si-based in-situ composites have low room-temperature fracture toughness. Herein, we have designed a novel Nb–40Ti–10Si–5Al–2V (at.%) composite, the microstructure of LDED-built composite is made up of Nbss and γ-Nb5Si3, the formation of γ-Nb5Si3 precipitate in the Nbss phase with an orientation relationships (ORs) of [1110]γ//[011]Nbss, (10 1¯ 0)γ//(011)Nbss and (1 2¯ 11)γ//(200)Nbss. The composite has Nbss, Nb3Si and γ-Nb5Si3 phases after heat treatment at 1400 °C for 30h, and δ-Nb11Si4 precipitate has formed in the Nbss phase with an ORs of [100]Nbss//[010]δ, (010)Nbss//(010)δ. The composite processing Nb–40Ti–10Si–5Al–2V (at.%) has outstanding toughness (21.62MPa·m1/2). It has ascertained that the room-temperature fracture toughness of Nb–Si-based in-situ composite is positively impacted by the high concentration of Ti.
更多
查看译文
关键词
Directed energy deposition,Nb–Ti–Si-based in-situ composite,Microstructure,Fracture toughness
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要