Synchronous Regulation of Donor and Acceptor Microstructure using Thiophene-Derived Non-Halogenated Solvent Additives for Efficient and Stable Organic Solar Cells

ADVANCED FUNCTIONAL MATERIALS(2024)

引用 0|浏览4
暂无评分
摘要
Solvent additives are pivotal for enhancing the morphology, efficiency, and stability of organic solar cells (OSCs). However, the widely used additive, 1,8-diiodooctane (DIO), has drawbacks like harmful halogen content and potential OSC degradation. To address these issues, novel non-halogenated, thienyl-alkyl-thienyl structural solvent additives-DTP, DTH, and DTN-featuring varying alkyl linker lengths of (CH2)3, (CH2)6, and (CH2)9, respectively are introduced. Additives with longer alkyl linkers, DTH and DTN, effectively dissolve and strongly interact with both the donor polymer PM6 and acceptor L8-BO. This dual interaction enables precise tuning of their microstructures, resulting in enhanced crystallinity. Upon incorporating DTH as an additive in OSCs (PM6:L8-BO), a minimal voltage loss is observed, leading to an impressive efficiency of 18.51%, surpassing the 17.90% achieved with DIO. Furthermore, DTH-based devices demonstrated superior photostability. In a ternary blend system (PM6:D18-Cl:L8-BO), an efficiency of 19.07% is attained, outperforming previous non-halogenated solvent additive-based OSCs. Furthermore, employing a non-halogenated processing solvent combination of toluene and carbon disulfide, a high PCE of 18.82% is achieved. These results underscore the efficacy of designing solvent additives with aromatic and alkyl units, enabling tailored interactions with the donor and acceptor, thereby presenting a robust strategy for optimizing OSC performance and stability. A novel class of non-halogenated solvent additives featuring a thiophene-alkyl-thiophene structure that can interact with both donor and acceptor, leading to enhanced crystallization within blended films. When these additives are incorporated into OSCs, an impressive efficiency of 19.07% is achieved, accompanied with improved stability under light illumination. image
更多
查看译文
关键词
crystallinity,organic solar cells,solvent additives,stability,thienyl-alkyl-thienyl
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要