Kir4.1 channels contribute to astrocyte CO2/H+-sensitivity and the drive to breathe

Colin M. Cleary, Jack L. Browning,Moritz Armbruster,Cleyton R. Sobrinho, Monica L. Strain, Sarvin Jahanbani, Jaseph Soto-Perez, Virginia E. Hawkins,Chris G. Dulla,Michelle L. Olsen,Daniel K. Mulkey

Communications Biology(2024)

引用 0|浏览4
暂无评分
摘要
Abstract Astrocytes in the retrotrapezoid nucleus (RTN) stimulate breathing in response to CO2/H+, however, it is not clear how these cells detect changes in CO2/H+. Considering Kir4.1/5.1 channels are CO2/H+-sensitive and important for several astrocyte-dependent processes, we consider Kir4.1/5.1 a leading candidate CO2/H+ sensor in RTN astrocytes. To address this, we show that RTN astrocytes express Kir4.1 and Kir5.1 transcripts. We also characterized respiratory function in astrocyte-specific inducible Kir4.1 knockout mice (Kir4.1 cKO); these mice breathe normally under room air conditions but show a blunted ventilatory response to high levels of CO2, which could be partly rescued by viral mediated re-expression of Kir4.1 in RTN astrocytes. At the cellular level, astrocytes in slices from astrocyte-specific inducible Kir4.1 knockout mice are less responsive to CO2/H+ and show a diminished capacity for paracrine modulation of respiratory neurons. These results suggest Kir4.1/5.1 channels in RTN astrocytes contribute to respiratory behavior.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要