Causal effects of PM2.5 exposure on neuropsychiatric disorders and the mediation via gut microbiota: A Mendelian randomization study

Chanhua Li, Hao Chen, Ye Gu, Wanling Chen,Meiliang Liu, Qinggui Lei, Yujun Li, Xiaomei Liang, Binyuan Wei,Dongping Huang,Shun Liu,Li Su,Xiaoyun Zeng,Lijun Wang

Ecotoxicology and Environmental Safety(2024)

引用 0|浏览0
暂无评分
摘要
Background Growing evidence has revealed the impacts of exposure to fine particulate matter (PM2.5) and dysbiosis of gut microbiota on neuropsychiatric disorders, but the causal inference remains controversial due to residual confounders in observational studies. Methods This study aimed to examine the causal effects of exposure to PM2.5 on 4 major neuropsychiatric disorders (number of cases = 18,381 for autism spectrum disorder [ASD], 38,691 for attention deficit hyperactivity disorder [ADHD], 67,390 for schizophrenia, and 21,982 cases for Alzheimer’s disease [AD]), and the mediation pathway through gut microbiota. Two-sample Mendelian randomization (MR) analyses were performed, in which genetic instruments were identified from genome-wide association studies (GWASs). The included GWASs were available from (1) MRC Integrative Epidemiology Unit (MRC-IEU) for PM2.5, PMcoarse, PM10, and NOX; (2) the Psychiatric Genomics Consortium (PGC) for ASD, ADHD, and schizophrenia; (3) MRC-IEU for AD; and (4) MiBioGen for gut microbiota. Multivariable MR analyses were conducted to adjust for exposure to NOX, PMcoarse, and PM10. We also examined the mediation effects of gut microbiota in the associations between PM2.5 exposure levels and neuropsychiatric disorders, using two-step MR analyses. Results Each 1 standard deviation (1.06 ug/m3) increment in PM2.5 concentrations was associated with elevated risk of ASD (odds ratio [OR] 1.42, 95% confidence interval [CI] 1.00–2.02), ADHD (1.51, 1.15–1.98), schizophrenia (1.47, 1.15–1.87), and AD (1.57, 1.16–2.12). For all the 4 neurodevelopmental disorders, the results were robust under various sensitivity analyses, while the MR-Egger method yielded non-significant outcomes. The associations remained significant for all the 4 neuropsychiatric disorders after adjusting for PMcoarse, while non-significant after adjusting for NOX and PM10. The effects of PM2.5 exposure on ADHD and schizophrenia were partially mediated by Lachnospiraceae and Barnesiella, with the proportions ranging from 8.31% to 15.77%. Conclusions This study suggested that exposure to PM2.5 would increase the risk of neuropsychiatric disorders, partially by influencing the profile of gut microbiota. Comprehensive regulations on air pollutants are needed to help prevent neuropsychiatric disorders.
更多
查看译文
关键词
PM2.5,Neuropsychiatric disorders,Gut microbiota,Mendelian randomization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要