Unexpected nucleation mechanism of T1 precipitates by Eshelby inclusion with unstable stacking faults

Materials Genome Engineering Advances(2024)

引用 0|浏览2
暂无评分
摘要
AbstractAluminum‐lithium (Al‐Li) alloy is one of the most promising lightweight structural materials in the aeronautic and aerospace industries. The key to achieving their excellent mechanical properties lies in tailoring T1 strengthening precipitates; however, the nucleation of such nanoparticles remains unknown. Combining atomic resolution HAADF‐STEM with first‐principles calculations based on the density functional theory (DFT), here, we report a counterintuitive nucleation mechanism of the T1 that evolves from an Eshelby inclusion with unstable stacking faults. This precursor is accelerated by Ag‐Mg clusters to reduce the barrier, forming the structural framework. In addition, these Ag‐Mg clusters trap the free Cu and Li to prepare the chemical compositions for T1. Our findings provide a new perspective on the phase transformations of complex precipitates through solute clusters in terms of geometric structure and chemical bonding functions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要