Construction of defective hydroxyl-rich metal-organic framework for effective capture of borate ion

CHEMICAL ENGINEERING JOURNAL(2024)

引用 0|浏览0
暂无评分
摘要
Developing high-efficiency adsorbents for borate ion still remains up to now. Herein, a facile and green method is used to obtain serial hydroxyl functionalized UiO-66-(OH)2-AA-X (AA, acetic acid; X, AA usage) by using AA as a modulator. The addition of AA can induce the generation of defect units in the adsorbents due to its partial substitution for the organic linkers. It is found that the defect degree as well as the porosity can be neatly regulated by the AA amount. In particular, UiO-66-(OH)2-AA-20 with the most defects exhibits a high adsorption capacity (891.1 mg g-1) towards borate ion, outperforming the most previously reported adsorbents. The adsorption reaches equilibrium at 600 min. The adsorption behavior can be well described by the Langmuir isotherm model and pseudo-second-order model. Besides, UiO-66-(OH)2-AA-20 possesses a wide pH (3-10) tolerance, excellent anti-interference ability, and good reusability. A combination of experimental characterization and density functional theory calculation indicates the free hydroxyl groups serve as the main adsorption sites, and the adsorption-driven forces involve electrostatic, coordination, hydrogen bonds and pi-pi stacking interactions. On these basis, our work may provide a guideline for constructing high-efficiency defective adsorbents for borate ions via a modulated strategy.
更多
查看译文
关键词
Adsorption,Borate ion,Defect regulation,Hydroxyl group,Metal-organic framework
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要