Extracting ultralight boson properties from boson clouds around postmerger remnants

PHYSICAL REVIEW D(2024)

引用 0|浏览0
暂无评分
摘要
Ultralight bosons are a class of hypothetical particles that could potentially solve critical problems in fields ranging from cosmology to astrophysics and fundamental physics. If ultralight bosons exist, they form clouds around spinning black holes with sizes comparable to their particle Compton wavelength through superradiance. This well-understood classical wave amplification process has been studied for decades. After these clouds form, they dissipate and emit continuous gravitational waves through the annihilation of ultralight bosons into gravitons. These gravitons could be detected with ground-based gravitational-wave detectors using continuous-wave searches. However, it is conceivable for other continuous-wave sources to mimic the emission from the clouds, which could lead to false detections. Here, we investigate how to use continuous waves from clouds formed around known merger remnants to alleviate this problem. In particular, we simulate a catalog of merger remnants that form clouds around them and demonstrate with select "golden" merger remnants how one can perform a Bayesian cross-verification of the ultralight boson hypothesis that has the potential to rule out alternative explanations. Our proof-of-concept study suggests that, in the future, there is a possibility that a merger remnant exists close enough for us to perform the analysis and test the boson hypothesis if the bosons exist in the relevant mass range. Future research will focus on building more sophisticated continuous-wave tools to perform this analysis in practice.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要