Influence of Defects and Surfaces on the Electrochemical Performance of MnO2 Cathodes in Rechargeable Alkaline Zn/MnO2 Batteries: A First-Principles Study

ACS APPLIED ENERGY MATERIALS(2024)

引用 0|浏览2
暂无评分
摘要
Manganese dioxide is a promising cathode material for energy storage applications because of its high redox potential, large theoretical energy density, abundance, and low cost. It has been shown that the performance of MnO2 electrodes in rechargeable alkaline Zn/MnO2 batteries could be improved by nanostructuring and by increasing the concentration of defects in MnO2. However, the underlying mechanism of this improvement is not completely clear. We used an ab initio density functional computational approach to investigate the influence of nanostructuring and crystal defects on the electrochemical properties of the MnO2 cathode material. The mechanism of electrochemical discharge of MnO2 in Zn/MnO2 batteries was studied by modeling the process of H ion insertion into the structures of pyrolusite, ramsdellite, and nsutite polymorphs containing oxygen vacancies, cation vacancies, and open surfaces. Our calculations showed that the binding energies of H ions inserted into the structures of MnO2 polymorphs were strongly affected by the presence of surfaces and bulk defects. In particular, we found that the energies of H ions inserted under the surfaces and attached to the surfaces of MnO2 crystals were significantly lower than those for bulk MnO2. The results of our study provide an explanation for the influence of crystal defects and nanostructuring on the electrochemical reactivity of MnO2 cathodes in rechargeable alkaline Zn/MnO2 batteries.
更多
查看译文
关键词
energy storage,rechargeable alkaline batteries,cathode material,manganese dioxide,crystal defects,surfaces,ab initio,density functional theory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要