Extracellular vesicles derived from HuMSCs alleviate daunorubicininduced cardiac microvascular injury via miR-186-5p/PARP9/STAT1 signal pathway

REGENERATIVE THERAPY(2024)

引用 0|浏览2
暂无评分
摘要
Introduction: It is essential to acknowledge that the cardiovascular toxicity associated with anthracycline drugs can be partially attributed to the damage inflicted on blood vessels and endothelial cells. Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) have the potential to repair cellular processes and promote tissue regeneration through the transfer of signaling molecules such as miRNAs. In the present study, we investigated the effects of MSC-EVs on daunorubicin (DNR)-damaged human cardiac microvascular endothelial cells (HCMEC) and developing blood vessels of Chicken Chorioallantoic Membrane (CAM) in vivo. Materials and methods: We constructed in vitro and in vivo models of DNR-damaged endothelial cells and developing blood vessel. Scratch wound assays, EdU assays, tube formation assays, and SA -fl -Gal staining were used to evaluate the effects of MSC-EVs on cell migration, proliferation, angiogenesis capacity and cell senescence. Blood vessel area was used to assess the effects of MSC-EVs on CAM vasculature. RT-qPCR was used to detect the mRNA expression levels of inflammatory molecules. RNA sequencing was employed to compare differential gene expression and downstream regulatory mechanisms. RNA interference experiments and miRNA mimic overexpression experiments were used to validate the regulatory effects of target genes and downstream signaling pathways. Results: We found that MSC-EVs improved the migration, proliferation, and angiogenesis of HCMEC, while also alleviating cellular senescence. The angiogenic effect on the developing blood vessels was confirmed in vivo. We identified that MSC-EVs downregulated the expression of PARP9, thereby inhibiting the STAT1/pSTAT1 signaling pathway. This downregulation effect is likely mediated by the transfer of miR-186-5p from MSC-EVs to HCMEC. Overexpression of miR-186-5p in DNR-damaged HCMEC also exhibited the aforementioned downregulation effect. In vivo, the introduction of miR-186-5p mimics enhanced angiogenesis in the CAM model. Conclusions: To summarize, our study reveals that MSC-EVs can restore the cellular function of DNRdamaged HCMEC and alleviate cellular senescence through the miR-185-5p-PARP9-STAT1/pSTAT1 pathway. This finding highlights the potential of MSC-EVs as a therapeutic strategy for mitigating the detrimental effects of anthracycline-induced endothelial damage. (c) 2024, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is an open access article under the CC BY -NC -ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
更多
查看译文
关键词
Daunorubicin-induced cardiac injury,Endothelial damage,Mesenchymal stem cell,Extracellular vesicles,microRNA,PARP9
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要