Numerical relativity simulations of black hole and relativistic jet formation

arxiv(2024)

引用 0|浏览2
暂无评分
摘要
We investigate impacts of stellar rotation and magnetic fields on black hole (BH) formation and its subsequent explosive activities, by conducting axisymmetric radiation-magnetohydrodynamics simulations of gravitational collapse of a 70 M_⊙ star with two-moment multi energy neutrino transport in numerical relativity. Due to its dense stellar structure, all models cannot avoid the eventual BH formation even though a strongly magnetized model experiences the so-called magnetorotational explosion prior to the BH formation. One intriguing phenomenon observed in the strongly magnetized model is the formation of a relativistic jet in the post-BH formation. The relativistic jet is the outcome of a combination of strong magnetic fields and low-density materials above the BH. The jet further enhances the explosion energy beyond ∼10^52 erg, which is well exceeding the gravitational overburden ahead of the shock. Our self-consistent supernova models demonstrate that rotating magnetized massive stars at the high-mass end of supernova progenitors could be a potential candidate of hypernova and long gamma-ray burst progenitors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要