Efficient Structure-Informed Featurization and Property Prediction of Ordered, Dilute, and Random Atomic Structures

arxiv(2024)

引用 0|浏览2
暂无评分
摘要
Structure-informed materials informatics is a rapidly evolving discipline of materials science relying on the featurization of atomic structures or configurations to construct vector, voxel, graph, graphlet, and other representations useful for machine learning prediction of properties, fingerprinting, and generative design. This work discusses how current featurizers typically perform redundant calculations and how their efficiency could be improved by considering (1) fundamentals of crystallographic (orbits) equivalency to optimize ordered cases and (2) representation-dependent equivalency to optimize cases of dilute, doped, and defect structures with broken symmetry. It also discusses and contrasts ways of (3) approximating random solid solutions occupying arbitrary lattices under such representations. Efficiency improvements discussed in this work were implemented within pySIPFENN or python toolset for Structure-Informed Property and Feature Engineering with Neural Networks developed by authors since 2019 and shown to increase performance from 2 to 10 times for typical inputs. Throughout this work, the authors explicitly discuss how these advances can be applied to different kinds of similar tools in the community.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要