Advancing antibiotic detection and degradation: recent innovations in graphitic carbon nitride (g-C3N4) applications

Rui Liu, Chaojun Zhang,Rijia Liu,Yuan Sun,Binqiao Ren, Yuhang Tong,Yu Tao

Journal of Environmental Sciences(2024)

引用 0|浏览0
暂无评分
摘要
The uncontrolled release of antibiotics into the environment would be extremely harmful to human health and ecosystems. Therefore, it is in urgent need to monitor the environment and promote the detection and degradation of antibiotics to the relatively harmless by-products to a feasible extent. Graphitic carbon nitride (g-C3N4) is a non-metallic n-type semiconductor that can be used for the antibiotic detection and degradation due to its easy synthesis process, excellent chemical stability and unique optical properties. Unfortunately, the utilization of visible light, electron-hole recombination and electron conductivity have hindered its potential applications in the fields of photocatalytic degradation and electrochemical detection. Although previous publications have highlighted the diverse modification methods for the g-C3N4-based materials, the underlying structure-performance relationships of g-C3N4, especially for the detection and degradation of antibiotics, remains to be further explored. In view of this, the current review centered on the recent progress in the modification techniques of g-C3N4, the detection and degradation of antibiotics using the g-C3N4-based materials, as well as the potential antibiotic degradation mechanisms of the g-C3N4-based materials. Additionally, the underlying applications of the g-C3N4-based materials for antibiotic detection and degradation were also prospected. This review would provide a valuable research foundation and the up-to-date information for the g-C3N4-based materials to combat antibiotic pollution in the environment.
更多
查看译文
关键词
g-C3N4,Antibiotics,Modification techniques,Photocatalytic degradation,Electrochemical detection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要