Ru-Ni bimetallic catalyst supported on CeO2 boosts chemoselective methoxycarbonylation of olefins

Yi-Ran Du,Rui Wang, Qing-Shan Niu, Yi-Yu Tao,Bao-Hua Xu

Chemical Engineering Journal(2024)

引用 0|浏览0
暂无评分
摘要
In this study, the bimetallic RuM-CeO2 (M = Ni, Fe, Cu, K and Cs) catalysts were facilely fabricated by taking the commercially available CeO2 (99.95 % metals basis, Aladdin, < 50 nm of diameter) as the support. They displayed distinct catalytic performance, especially the chemo-selectivity, on the methoxycarbonylation of styrene with CO and CH3OH. Impressively, Ru2Ni0.6-CeO2 provided an up to 90.1 % yield of methyl phenylpropionate with satisfied linear selectivity (L/B = 91/9). The characterization and mechanistic results demonstrated that the doping of proper amount of Ni species enriches the local oxygen vacancy (Vö) at the surface but slightly reduces the charge at Ru sites, thereby modulating the interfacial Lewis acid − base pair (Ru-O-Ce-Vö) for catalysis. It thus enhances the CH3OH dissociation, leading to high coverage of OCH3 species with low adsorption energy and relatively weak acidity. Further, the insertion of CO becomes readily due to the weak Ru-CO affinity at electron-deficient Ru center therein. As such, the apparent activation energies (Ea) of styrene methoxycarbonylation over Ru2-CeO2 (71.2 kJ mol−1) is nearly half-reduced by doping Ni element (Ru2Ni0.6-CeO2: 37.5 kJ mol−1). Meanwhile, the competitive side reactions at the surface of Ru2Ni0.6-CeO2 is inhibited without sufficient acid strength and acid sites. Both aromatic olefins and cyclic olefins were well tolerated under such a system.
更多
查看译文
关键词
Ru-Ni,CeO2,Bimetallic catalyst,Methoxycarbonylation,Heterogeneous catalysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要