Prediction of the Ki-67 expression level in head and neck squamous cell carcinoma with machine learning-based multiparametric MRI radiomics: a multicenter study

BMC Cancer(2024)

引用 0|浏览3
暂无评分
摘要
This study aimed to develop and validate a machine learning (ML)-based fusion model to preoperatively predict Ki-67 expression levels in patients with head and neck squamous cell carcinoma (HNSCC) using multiparametric magnetic resonance imaging (MRI). A total of 351 patients with pathologically proven HNSCC from two medical centers were retrospectively enrolled in the study and divided into training (n = 196), internal validation (n = 84), and external validation (n = 71) cohorts. Radiomics features were extracted from T2-weighted images and contrast-enhanced T1-weighted images and screened. Seven ML classifiers, including k-nearest neighbors (KNN), support vector machine (SVM), logistic regression (LR), random forest (RF), linear discriminant analysis (LDA), naive Bayes (NB), and eXtreme Gradient Boosting (XGBoost) were trained. The best classifier was used to calculate radiomics (Rad)-scores and combine clinical factors to construct a fusion model. Performance was evaluated based on calibration, discrimination, reclassification, and clinical utility. Thirteen features combining multiparametric MRI were finally selected. The SVM classifier showed the best performance, with the highest average area under the curve (AUC) of 0.851 in the validation cohorts. The fusion model incorporating SVM-based Rad-scores with clinical T stage and MR-reported lymph node status achieved encouraging predictive performance in the training (AUC = 0.916), internal validation (AUC = 0.903), and external validation (AUC = 0.885) cohorts. Furthermore, the fusion model showed better clinical benefit and higher classification accuracy than the clinical model. The ML-based fusion model based on multiparametric MRI exhibited promise for predicting Ki-67 expression levels in HNSCC patients, which might be helpful for prognosis evaluation and clinical decision-making.
更多
查看译文
关键词
Head and neck squamous cell carcinoma,Magnetic resonance imaging,Machine learning,Radiomics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要