Molecular Simulation-guided and Physics-informed Constitutive Modeling of Highly Stretchable Hydrogels with Dynamic Ionic Bonds

Journal of the Mechanics and Physics of Solids(2024)

引用 0|浏览5
暂无评分
摘要
Adaptive polymers are being designed with dynamic molecular bonds or chain interactions to respond with external stimuli with unparalleled mechanical properties and multifunctionality. An elegant example is to substantially enhance the stretchability and toughness of hydrogels through the use of ionic bond interactions. To assist the materials design and applications, a predictive theory is in high demand. However, existing multi-scale mechanics models often rely on empirical assumptions and relationships derived from polymer chemistry or physics to describe the evolution of microscale details under external stimuli, which are challenging to be validated experimentally. This study introduces a new methodology to develop constitutive theories for stretchable hydrogels based on insights garnered from molecular dynamics (MD) simulations. The continuum-level viscoelastic theory establishes the thermodynamics framework for stress-strain relationships, while MD simulations inform the evolution mechanisms of microscale bond interactions and network rearrangements, such as the bond distance and network relaxation time. These insights are then properly formulated based on polymer physics principles and fed into the continuum-level model. The resulting constitutive theory closely captures the stress responses at various loading conditions observed in experiments, as well as the microscale system volume and bond distance uncovered in MD simulations. Parametric studies are conducted to investigate the influences of various loading and material parameters on the mechanical properties of the materials, including loading rates, network crosslinking density, maximum strain, and bonding strength. Overall, the study establishes the connection between microscale network structure and mechanical responses of stretchable hydrogels with dynamic ionic bonds. It also offers practical guidance for optimizing material structures and loading conditions to enhance energy absorption and dissipation capabilities. The modeling approach can be extended to the study of other adaptive polymers with different dynamic bonds to create more precise and physically meaningful constitutive models.
更多
查看译文
关键词
Molecular dynamics simulation,Physics-informed constitutive model,Stretchable hydrogels,Dynamic ionic bonds
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要