Hamiltonian Learning using Machine Learning Models Trained with Continuous Measurements

Kris Tucker, Amit Kiran Rege, Conor Smith,Claire Monteleoni,Tameem Albash

arxiv(2024)

引用 0|浏览1
暂无评分
摘要
We build upon recent work on using Machine Learning models to estimate Hamiltonian parameters using continuous weak measurement of qubits as input. We consider two settings for the training of our model: (1) supervised learning where the weak measurement training record can be labeled with known Hamiltonian parameters, and (2) unsupervised learning where no labels are available. The first has the advantage of not requiring an explicit representation of the quantum state, thus potentially scaling very favorably to larger number of qubits. The second requires the implementation of a physical model to map the Hamiltonian parameters to a measurement record, which we implement using an integrator of the physical model with a recurrent neural network to provide a model-free correction at every time step to account for small effects not captured by the physical model. We test our construction on a system of two qubits and demonstrate accurate prediction of multiple physical parameters in both the supervised and unsupervised context. We demonstrate that the model benefits from larger training sets establishing that it is in fact "learning," and we show robustness to errors in the assumed physical model by achieving accurate parameter estimation in the presence of unanticipated single particle relaxation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要