Lithium isotopic composition of low-temperature altered oceanic crust and its implications for Li cycling

Chemical Geology(2024)

引用 0|浏览2
暂无评分
摘要
To investigate the Li fluxes and its isotopic fractionation during low-temperature seafloor alteration, we present the Li isotope compositions of fifty fresh and altered basalts drilled from the Integrated Ocean Drilling Program (IODP) 329 Expedition Sites U1365 and U1368, which show different low-temperature (<150 °C) alteration styles and intensities (i.e., total volume of secondary minerals and degrees of elemental enrichment) with meager sedimentation rates (0.71 and 1.1 m/Myr, respectively). The fresh basalts (δ7Li vary from +2.7 to +6.4) show Li isotope compositions consistent with the published N-MORB (+3.5 ± 1.0‰), whereas the altered basalts exhibit considerably higher δ7Li values (+1.7‰ to +11.6‰). Furthermore, their δ7Li values show positive correlations with alkali elements and loss on ignition and follow a mixing trend between a MORB-like endmember and a Li-rich seawater-derived endmember (+9.2 ± 0.2‰), which indicates the effects of low-temperature seafloor alteration on Li isotopic compositions. Based on previously reconstructed paleo-seawater Li isotope compositions, the Li isotopic fractionation scale between seawater and altered basalts is estimated (+12.6‰ and + 18.0‰ for Sites U1365 and U1368, respectively), which further supports previous conclusions that the scale of Li isotope fractionation changes over time. A mass calculation suggests the upper limits of the Li-uptake fluxes during low-temperature seafloor alteration are 14.9 ± 2.2 × 109 mol/year and 3.6 ± 1.3 × 109 mol/year for Sites U1365 and U1368, respectively. In addition, our estimation shows the Li-uptake flux during low-temperature seafloor alteration in the Cretaceous is comparable to the total Li-input flux, whereas, in the Neogene, the Li-uptake flux during low-temperature seafloor alteration is much lower than that of the Li-input flux, which suggests a large diagenetic Li sink may be necessary to maintain the seawater Li budget balance if we assume the seawater Li concentration is roughly constant.
更多
查看译文
关键词
Li isotopes,Low-temperature seafloor alteration,Li flux,IODP U1365 and U1368,Altered oceanic crust
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要