谷歌浏览器插件
订阅小程序
在清言上使用

Optimizing Urban Traffic Efficiency via Virtual Eco-Driving Featured by a Single Automated Vehicle

Mehmet F. Ozkan,Shobhit Gupta, Stefano D'Alessandro,Matteo Spano,Dennis Kibalama, Jacob Paugh,Marcello Canova,Stephanie Stockar, Ronald A. Reese,Bryon Wasacz

SAE Technical Paper Series(2024)

引用 0|浏览3
暂无评分
摘要
In the face of growing concerns about environmental sustainability and urban congestion, the integration of eco-driving strategies has emerged as a pivotal solution in the field of the urban transportation sector. This study explores the potential benefits of a CAV functioning as a virtual eco-driving controller in an urban traffic scenario with a group of following human-driven vehicles. A computationally inexpensive and realistic powertrain model and energy management system of the Chrysler Pacifica PHEV are developed with the field experiment data and integrated into a forward-looking vehicle simulator to implement and validate an eco-driving speed planning and energy management strategy assuming longitudinal automation. The eco-driving algorithm determines the optimal vehicle speed profile and energy management strategy. Then, a microscopic traffic model that represents the driving behaviors of the human-driven vehicle queue is introduced to investigate the overall energetic impact of the eco-driving strategy on human-driven vehicles in urban routes. Two different scenarios are considered, one involving human-driven vehicles following a lead human-driven vehicle, and the other with the human-driven vehicles led by the CAV. The results reveal that CAV not only achieves high energy savings for the CAV itself but also improves the fuel economy of the following human-driven vehicles without featuring any cooperative driving. The findings highlight that even with a low penetration rate, CAVs could reduce the overall energy usage of a cohort of uncoordinated vehicles in urban traffic scenarios by as much as 7% - 27% when used as virtual eco-driving controllers.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要