Early hippocampal high-amplitude rhythmic spikes predict post-traumatic epilepsy in mice

Tyler Shannon, Noah Levine, Rina Dirickson, Yiyun Shen,Christopher Cotter, Yoon-Jae Yi, Noora Rajjoub,Fernando Pardo-Manuel de Villena,Olga Kokiko-Cochran,Bin Gu

biorxiv(2024)

引用 0|浏览5
暂无评分
摘要
Oscillations, a highly conserved brain function across mammalian species, are pivotal in brain physiology and pathology. Traumatic brain injury (TBI) often leads to subacute and chronic brain oscillatory alterations associated with complications like post-traumatic epilepsy (PTE) in patients and animal models. Our recent work longitudinally recorded local field potential from the contralateral hippocampus of 12 strains of recombinant inbred Collaborative Cross (CC) mice alongside classical laboratory inbred C57BL/6J mice after lateral fluid percussion injury. In this study, we profiled the acute (<12 hr post-injury) and subacute (12-48 hr post-injury) hippocampal oscillatory responses to TBI and evaluated their predictive value for PTE. We found dynamic high-amplitude rhythmic spikes with elevated power density and reduced entropy that prevailed during the acute phase in CC031 mice who later developed PTE. This characteristic early brain oscillatory alteration is absent in CC031 sham controls or other CC and reference C57BL/6J strains that did not develop PTE after TBI. Our work provides quantitative measures linking early brain oscillation to PTE at a population level in mice under controlled experimental conditions. These findings will offer insights into circuit mechanisms and potential targets for neuromodulatory intervention. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要