FNeXter: A Multi-Scale Feature Fusion Network Based on ConvNeXt and Transformer for Retinal OCT Fluid Segmentation.

Zhiyuan Niu,Zhuo Deng, Weihao Gao, Shurui Bai, Zheng Gong, Chucheng Chen, Fuju Rong,Fang Li,Lan Ma

Sensors (Basel, Switzerland)(2024)

引用 0|浏览0
暂无评分
摘要
The accurate segmentation and quantification of retinal fluid in Optical Coherence Tomography (OCT) images are crucial for the diagnosis and treatment of ophthalmic diseases such as age-related macular degeneration. However, the accurate segmentation of retinal fluid is challenging due to significant variations in the size, position, and shape of fluid, as well as their complex, curved boundaries. To address these challenges, we propose a novel multi-scale feature fusion attention network (FNeXter), based on ConvNeXt and Transformer, for OCT fluid segmentation. In FNeXter, we introduce a novel global multi-scale hybrid encoder module that integrates ConvNeXt, Transformer, and region-aware spatial attention. This module can capture long-range dependencies and non-local similarities while also focusing on local features. Moreover, this module possesses the spatial region-aware capabilities, enabling it to adaptively focus on the lesions regions. Additionally, we propose a novel self-adaptive multi-scale feature fusion attention module to enhance the skip connections between the encoder and the decoder. The inclusion of this module elevates the model's capacity to learn global features and multi-scale contextual information effectively. Finally, we conduct comprehensive experiments to evaluate the performance of the proposed FNeXter. Experimental results demonstrate that our proposed approach outperforms other state-of-the-art methods in the task of fluid segmentation.
更多
查看译文
关键词
retinal fluid segmentation,Transformer,optical coherence tomography,attention
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要