Impacts of groundwater dynamics around a macro-tidal river on agricultural soil salinity

Science of The Total Environment(2024)

引用 0|浏览0
暂无评分
摘要
Estuaries are vulnerable to oceanic and atmospheric climate change. Much of the research investigating climate change impacts on estuaries is focused on saltwater intrusion within surface water due to drought and rising sea levels, with implications for ecosystems and humans. Groundwater and soil near estuaries may also be influenced, as estuary salinity and hydraulic head changes can impact soils and aquifers not previously at risk of salinization. This study was conducted to address knowledge gaps related to present and future groundwater salinity distribution in a groundwater system connected to a macro-tidal estuary that experiences a tidal bore due to its hydraulic connection to the Bay of Fundy in Nova Scotia, Canada. A parcel of agricultural land adjacent to the estuary was selected as the study site to assess the groundwater response to episodic fluctuations in estuary water levels and salinity. Groundwater monitoring and electromagnetic surveys were conducted to map soil and groundwater salinity patterns. A numerical model of groundwater flow and solute transport informed by field data was used to investigate how varying estuary salinity due to droughts and sea-level rise could impact groundwater salinity. Results showed that, in contrast to salt wedges observed along marine coasts, the saline groundwater existed as a plume immediately around the estuary. Model simulations showed that short-term droughts had an insignificant impact on the adjacent groundwater salinity. However, permanent increases in salinity caused by sea-level rise increased the plume volume by 86 %, or an additional ~11 m horizontally and ~ 4.5 m vertically. Our results suggest that increased river salinity in this setting would not result in widespread salinization of porewater and agricultural soils, but more extensive salinization may be experienced in permeable aquifers or along more saline estuarine zones. Findings may inform land management decisions in regions exposed to increased salinity in the future.
更多
查看译文
关键词
Saltwater intrusion,Estuary,River salinization,Agriculture,Soil salinity,Climate change
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要